Math 335 Sample Problems

One notebook sized page of notes (*one side*)will be allowed on the test. You may work together on the sample problems – I encourage you to do that. The test will cover 4.5-4.7 and 5.3-5.8, 6.1. There may be homework problems on the test. The midterm is on Monday, February 4.

- 1. Suppose f is continuous on $[0, \infty)$ and |xf(x)| < 1 for $x \ge 1$. Prove or give a counterexample to the statement that $\int_1^\infty f(x) dx$ converges.
- 2. Let C be the curve of intersection of y + z = 0 and $x^2 + y^2 = a^2$ oriented in the counterclockwise direction when viewed from a point high on the z-axis. Use Stokes' theorem to compute the value of $\int_C (xz+1)dx + (yz+2x)dy$.
- 3. Let

$$\phi(x) = \int_0^\pi \cos(x \sin t) dt.$$

Prove that

$$x\phi''(x) + \phi'(x) + x\phi(x) = 0.$$

- 4. (a) Prove that ∫_C (-ydx + xdy)/(x² + y²) is not independent of path on R² 0.
 (b) Prove that ∫_C (xdx + ydy)/(x² + y²) is independent of path on R² 0. Find a function f(x, y) on R² 0 so that ∇f = ((x/x² + y²), (y/x² + y²)).
- 5. Prove that $\int_0^\infty \cos x^2 dx$ converges, but not absolutely.
- 6. Decide if the following integrals converge conditionally, converge absolutely, or diverge.

(a)
$$\int_{-\infty}^{+\infty} x^2 e^{-|x|} dx$$

(b) $\int_{-\infty}^{\pi} dx$

$$\int_0 \frac{1}{(\cos x)^{\frac{2}{3}}}$$

(c)

$$\int_{1}^{\infty} \frac{\sin(1/x)}{x} dx$$

- 7. Let f and g be integrable on [a, b] for every b > a.
 - (a) Prove that

$$(\int_a^b |fg|)^2 \le \int_a^b f^2 \int_a^b g^2.$$

You must give a proof of this. It is not proved in the text.

- (b) Prove that if $\int_a^{\infty} f^2$ and $\int_a^{\infty} g^2$ converge then $\int_a^{\infty} fg$ converges absolutely.
- 8. Let $a_n = \log(\frac{n}{n+1})$. Does $a_n \to 0$? Does the series $\sum_{n=1}^{\infty} a_n$ converge? If so, find its limit.
- 9. Let S be the surface (torus) obtained by rotating the circle $(x-2)^2 + z^2 = 1$ around the z-axis. Compute the integral $\int_S \mathbf{F} \cdot \mathbf{n} dA$, where $\mathbf{F} = (x + \sin(yz), y + e^{x+z}, z - x^2 \cos y)$.

10. Let
$$w(x)$$
 satisfy $w''(x) + w(x) = 0$, $w(0) = 0$, $w'(0) = 1$. Let $f(x) = \int_0^x (w(x-y))h(y)dy$. Prove that $f''(x) + f(x) = h(x)$, $f(0) = 0$, $f'(0) = 0$.

- 11. We have covered the following:
 - (a) Surface area
 - (b) Divergence theorem
 - (c) Stokes' theorem
 - (d) Integrating vector derivatives
 - (e) Integrals dependent on a parameter
 - (f) Improper single and multiple integrals
 - (g) Introduction to infinite series.
- 12. There may be homework problems or example problems from the text on the midterm.